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Abstract

I define the parameters of a helical track in a solenoidal magnetic field, and derive useful
expressions for the algebra.



1 Introduction

In a uniform solenoidal magnetic field, the trajectory of a charged track is a helix, with the helix
axis defined by the magnetic field, B. We arrange our coordinate system such that B defines the
z-axis. Since the sign of B can change, the direction of the z-axis is fixed with respect to the detector
geometry. Figure 1 shows the r — ¢ projection of such a helical track, with 2z, y, and z forming a
right-handed coordinate system.

The track can be parameterized in many ways. To start, I use the CLEO convention[?]. I distin-
guish between the physics parameters of the track (i.e. p, &, etc.) and the geometrical parameters.
For the most part, track reconstruction is only concerned with the geometrical parameters, although
of course quantities such as the momentum and energy loss are needed for calculating contributions
from multiple scattering and energy loss.

A track emanating from a primary or secondary vertex is uniquely specified by 5 parameters. If
the unit vector of the track is 4, and the unit vectors of the coordinate axes &, g, 2, then the angle

¢ is defined by cos¢ =4 - &

k — the signed curvature of the track. The curvature is positive (@) = 1), if ¢ increases in moving
out along the track from the point of closest approach (pca) to the z-axis. Note that geometric
curvature, (), is not the same as the physical curvature, ¢.

¢g — the r — ¢ direction of the track at the point of closest approach to the z-axis, i.e. ¢ = ¢g at the
pca.

dyg — the signed distance between the z-axis and the point of closest approach to the z-axis. For
Q) = +1, dy is negative if the track circle contains the origin, positive otherwise, and vice versa

for () = —1.

zo — the distance in z between the point of closest approach to the z-axis and the r — ¢ plane. Since
zp is measured along the z-axis, it is correspondingly signed.

tan A — the tangent of the angle between the » — ¢ plane and a 3-D track vector, i.e. tan A = cot 8 =
- 2. Ais also called the dip angle, because it measures how much the track dips out of the
r — ¢ plane.

Other useful quantities used to describe the track are:

p — the radius of curvature. We define k = ) /2p. The acceptance of the detector gives the minimum
radius that a track must reach in order to be detected. p is then bounded from below, making
k bounded from above. An infinite momentum track corresponds to x =. Not only is |k|
bounded in [0, Q/2p,i,], but as a nearly straight track changes sign from positive to negative,
k changes continuously from +¢ to —e. The resulting numerical stability makes x preferable
to p. The factor of 2 in the definition is simply for algebraic convenience.

(ze,ye) — the coordinates of the center of the track circle. Except for initial derivations, z¢ and yc
are not used for the same reason as p.

(z0,y0) — the coordinates of the oint of closest approach in the r — ¢ plane.
pe — the distance in the r — ¢ plane from the center of the track circle to the z-axis.

¢¢ — the azimuth of the track circle.



(x,.Y,)

Figure 1: The r — ¢ projection of a helical track
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1 — the angle through which the track rotates in moving from the pca to any point (z,y) on the

track.

From the definitions, and by inspection, we can write down expressions between these other track

quantities:
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The relation between the geometrical parameters and the physical parameters then follows. For
a track of momentum p, charge ¢, and polar angle 8, the momentum, signed by the physical charge

q, in units of GeV/c is given by:

aB

pcosh = pr = —
K

(6)

where B is the signed (axial) magnetic field in Tesla, py is the transverse momentum in GeV/c, and

the constant a is:

1
a = ) 1079 ~ 0.15GeV - sec - T~

(7)



2 Cartesian Parameterization

It is often more convenient to use a Cartesian parameterization of the track. From the geometry of
Figure 1, any point (z,y) on the circular track is given by:

(x —2c)’ + (y —ye)* = p* (8)

Multiplying out and dividing by 2Qp gives:

kKt 4 az+ By+v=0 9)
where 7% = 22 + y? and:

k= zQ_p (10)

a:'€“ (1)

g o- ok (12)

. Q@?zf—p3 (13)

which introduces the four parameters, x, o, 3, v, with only 3 independent ones. The constraint
equation then defines another parameter &, such that:

€ =0a’+p%=1+4ry (14)

At the expense of adding a quadratic constraint equation, we have linearized the circle equation,
which will lead to many computational savings.
We can now trivially derive relations between the 2 parameterizations:

pe = pila’+5%) = pie? (15)
a = Esingg (17)
5 = —gcosdo (15)
with the inverse relationships:
-0 _ 2
0 2% €+1) (20)
po = tan! (ﬂ) = atan2(«a, — ) (21)
(using the C function atan2 to return a result in the range [—x, pi]). The coordinates at the origin
are:
—2ary
T S — 22
T e+ 22
—2By
v = — 23
DT EEHD 2



3 Intersection of Track with a Circle

Consider the intersection of a track with a circle of radius R centered at the origin, such as a drift
chamber tracking layer. If the curvature is too large, the track curls before even reaching the circle.
At some radius, R, .|, the track just grazes the circle at one point. At smaller R (or smaller &, the
track intersects the circle once on the outward path, and a second time on the inward path. Let (z,y)
be the coordinates of the intersection point. Then the simultaneous equations for the track and the
circle are:

kritaz+By+y = 0 (24)
A (25)
solving for & and y:
1/2
28? = —a(kR*+7y)Fp (R2€2 — (kR* + 7)2) / (26)
1/2
Ve = PR +)ta (B - (xR +7))" (27)

where the first sign in the = (£) refers to the outward branch of the track, and the second sign to
the inward branch. The solutions for 2 and y become single-valued at the minimum and maximum
values of R, which are found by equating the argument of the square root to zero. The minimum

radius, R,iy, is just do; the maximum radius, Bmax, is Reyq)
-1 ‘ ‘ 2y ‘
. dnl = = 2
(29)
€+1 2y
Rmax = Rcurl = ‘ I = (5 _ 1) (30)
The coordinates at R, are:
—a(f+1)
Teurl = 2%r (31)
—BE+1)
Yeurl = 2%r (32)
(33)
Rearranging to find the value of k corresponding to R
QR+~y
o= 2 (34)
To find the r — ¢ direction cosines at (z,y), we can differentiate equation (9):
dy dy
m<2x+2y%)+a+ﬁ%—0 (35)
and rearranging:
d 2

dx (2ky + )

5
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Figure 2: The intersection of a track with a circle of radius R

Denoting the z and y components of the r — ¢ direction cosines by @’ and y’, it follows that:

o = —(2ry+ ) (37)
Y = (2kz+a) (38)

It follows automatically that 2% + 3> = 1. Moreover, at the point g, yg), ' and 3’ become cos ¢g
and sin ¢g respectively. Hence the signs and normalization of equations 37-38 are correct.

We can use equations 37-38 to derive equations for the entrance angle of a track into a cylinder
of radius R. The unit vector of the cyclinder at the point (z,y) is radial, and using the unit vector
of the track:

= (") (39)
Po= (zy)/R (40)

=>

denoting the angle between @ and # by 8, it follows that:

KR — v
e ai 11
sin X7 7 (41)
. (y=pr) 1 242 2 2\ 1/2
cosf = u-r—iR —iE(Rf — (kR +’7)) (42)

The meaning of 4 for cos @ is the same as in equations 26-27, showing explicitly the correct sign for
tracks on the outward (inward) part of the trajectory. The sign of cos 8 from equation 42, determined
from (ay — Bx) can then be used to determine the branch (inward or outward) of a track.



4 Distance of a Point from Track

Consider an arbitrary point, (z,y), such as in Figure 4. Define d to be the perpendicular distance
from (z,y) to the track, with a sign defined by:

R | )
= 1{ 04—|-2I{$ (ﬁ—i—?my)}lm—l}
! { 1—}—4/@ (kr +aw—|—ﬁy+7)r/2—1}

\/1+4m5— 1
Sl (43)

where:
§=rri+azr+pBy+y (44)

Clearly, if (z,y) lies on the track, § = 0, and so d = 0. If (z,y) is the origin, then 6 =, and:

d— Vid+dey -1 (45)

2K

But from equation 20,
do_(f—l):~/1+4’f’7—1 (46)
2K 2K
In other words, the sign used in equation 43 is consistent with our definition of dp.
If the point is not too far from the track, then we can expand the square root, and approximate
equation 43 to:

d=5(1-Kd)+... (47)

5 Determination of Track Parameters from Three Points

The r — ¢ parameters of a circular track can be uniquely determined by specifying three points. Let
these points be (z1,y1), (22,y2), and (23,ys). Using equation (9), we can write down 3 equations
for the 3 unknows:

kr? 4 axy + By +v =0 (48)
K2 4 axy + By +v =0 (49)
Kri 4+ aws + fys +7 =0 (50)

The curvature, x, is independent of the actual coordinate origin, although the other parameters are
not. Therefore, we can shift the origin to (21,y1) to calculate x. In this new coordinate system,
a— o, = and v — ' = 0. The equations for points 2 and 3 are then:

kra 4+ a'vg + By =0 (51)
kra o'y + B'y3 =0 (52)
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Figure 3: Distance from Point to Track
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Figure 4: Determination of Track Parameters from 3 points



where 291 is measured from point 2 to point 1, and similarly for the other quantities. Solving for o,
i
o —K Y31 —Y21 T‘%l
-k 53
( B ) A ( —x31 T2 T‘§1 (53)

A =z91y31 — y21231 = (22 — 1) (ys —y1) — (Y2 — y1) (23 — 1) = A1+ Agz + Agy (54)

where:

and A;; = 2;y; — z;y;. A is just the area of the triangle defined by the 3 points, and shown in
Figure 5, since if E_;'j is the vector from point 7 to point j:

lij = (2 — 24,y — ¥i) (55)
it follows that: _ _
A= (flg X €13) = flg . flg sin 6 (56)

A positive A means that the angle 8 is positive, so the curvature of the track, x, has the same sign
as A, and if A =0, then k = 0.

Since v/ = 0, &/* 4+ 3’2 = 1, we get an expression for x:

K2 2 2
A2 [(9317‘%1 - 9217‘31) + (—95317‘%1 + 95217‘%1) ] =1 (57)
and simplifying:
2
K
A2 r§1r§1 {7‘%1 — 2 (231221 + y31y21) + 7‘%1} =1 (58)

The middle term is just the dot product:
231221 + y31y21 = L1y - 13 = royr3; cos b (59)

and from the cosine rule, r3; — 2ry1r3; cos @ + r3; = r2,, so finally we get the expression for x:

PR (60)
r'127237'31
which from the previous argument, also has the correct sign. That is, & is the area of the triangle
defined by the 3 points, divided by the lengths of the 3 sides.

Using this expression for s, (or K/A), we can immediately solve for o/ and ', as given by equa-
tion 53. To calculate v, we can find the distance from the track to the origin in the original coordinate
system using equation 43. In the translated coordinate system, the old origin is at (—z1, —y1), so &
in equation 43 is:

§=kri —ad'zy — By (61)

since ¥/ = 0. But in the original coordinate system, v = §, since § is calculated from the origin. We
have therefore solved for +. If we need o and 3, we can take equations 48-49, using & and ~:

o -1 Y2 —U Hf‘% + v
- 62
(ﬂ) A12(—902 1 )(’“‘%""Y ( )



